Int, J. Heat Mass Transfer.
Printed in Great Britain

Vol. 31, No. 4, pp. 759-767, 1988

0017-9310/88 $3.00+0.00
© 1988 Pergamon Press ple

Vortex instability of buoyancy-induced inclined
boundary layer flow in a saturated porous medium

JIIN-YUH JANG and WEN-JENG CHANG

Department of Mechanical Engineering, National Cheng-Kung University, Tainan, Taiwan
70101, Republic of China

(Received 28 May 1987)

Abstract—A linear stability theory is used to analyse the vortex instability of buoyancy-induced boundary
layer flow in a saturated porous medium adjacent to an inclined heated surface, where the wall temperature
is a power function of the distance from the origin. In the main flow analysis, both the streamwise and
normal component of the buoyancy force are retained in the momentum equations. Numerical results for
surface heat transfer, the neutral stability curve, critical Rayleigh and wave numbers are presented for the
angles of inclination ¢ from the horizontal in the range of 0 to 70°. It is found that as the angle of inclination
from the horizontal increases, the heat transfer rate increases, whereas the susceptibility of the flow to the
vortex mode of instability decreases. The present study provides new vortex instability results for small
angles of inclination (¢ < 30°) and more accurate results for large angles of inclination (¢ > 30°) than the
previous study by Hsu and Cheng (ASME J. Heat Transfer 101, 660-665 (1979)), where the normal
component of the buoyancy force in the main flow was neglected.

1. INTRODUCTION

THE BUOYANCY-induced motion of fluid through per-
meable material is an important mechanism of trans-
port. Cheng and Chang [1] developed the similarity
solutions for buoyancy-induced flow in a saturated
porous medium adjacent to impermeable horizontal
surfaces. In a subsequent paper, Hsu et al. {2] analysed
the vortex mode of instability for a horizontal natural
convection in a porous medium. Cheng and Min-
kowycz [3] presented a similarity analysis for a vertical
flat plate embedded in a saturated porous medium.

For an inclined surface, the buoyancy force causing
motion has a component in both the tangential and
normal directions. This causes a pressure gradient
across the boundary layer and leads to a theoretical
analysis more complicated than that for a vertical or
a horizontal surface. By neglecting the normal com-
ponent of buoyancy force that induces the streamwise
pressure gradient in the flow, Hsu and Cheng [4]
showed that, in the main flow analysis, the boundary
layer flow over an inclined heated plate can be
approximated by the similarity solutions for a vertical
plate, with the gravity component paraliel to the
inclined plate incorporated in the Rayleigh number ;
then the vortex instability was analysed by a local
similarity method. Therefore, the main flow and insta-
bility results in ref. [4] are not valid for the angles of
inclination from the vertical that are not small. This
is because the normal component of the buoyancy
force is responsible for the occurrence of the longi-
tudinal vortices; and this component cannot be
neglected when the angles of inclination from the ver-
tical are large.

The purpose of this paper is to re-examine the main
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flow and vortex instability of free convection bound-
ary layer flow over an inclined, upward-facing heated
plate in a saturated porous medium, for the angles of
inclination from the horizontal, ¢, ranging from 0 to
close to 90°. The wall temperature is a power function
of the distance from the origin. Both the streamwise
and normal components of the buoyancy force are
retained in the momentum equations. This is in con-
trast to the previous analyses by Hsu and Cheng [4]
that are generally valid only for ¢ > 45°. Thus the
present study covers the ranges of 0 < ¢ <45° in
which no reliable stability results are available in the
literature. The present resulting governing equations
for the main flow do not admit similarity solutions.
They are solved by using a suitable variable trans-
formation and employing an efficient finite difference
method similar to that described in Cebeci and Brad-
shaw [5]. The stability analysis is based on the linear
theory. The disturbance quantities are assumed to be
in the form of a stationary vortex roll that is periodic
in the spanwise direction, with its amplitude function
depending primarily on the normal coordinate and
weakly on the streamwise coordinate. The resulting
eigenvalue problem is solved using a variable step-size
sixth-order Runge-Kutta integration routine incor-
porated with the Kaplan filtering technique [6] to
maintain the linear independence of the two eigen-
functions. It should be noted that the corresponding
problem for a viscous fluid was analysed by Chen and
Tzuoo {7]. As might be expected, the qualitative result
for a porous medium resembles that for a viscous
fluid. However, there are some differences, notably
those arising from the boundary conditions and the
governing equations that differ in the two problems.
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NOMENCLATURE
a dimensional spanwise wave number B coefficient of thermal expansion
f similarity stream function profile o, thermal boundary layer thickness
F dimensionless disturbance stream n similarity variable, y(Ra, cos ¢)'?/x
function amplitude 0 dimensionless temperature,
g gravitational acceleration (T—T ) (To—Ty)
k dimensionless wave number, Q] dimensionless disturbance
ax/(Ra,cos ¢)"* temperature amplitude
ky dimensionless wave number, A volumetric heat capacity of the
ax/(Ray)'? saturated porous medium to that of
K Darcy permeability the fluid
Nu, local Nusselt number i viscosity
P’ perturbation pressure P density
P main flow pressure o temporal growth constant
Ra, local Rayleigh number, v kinematic viscosity
PgKB(T, — T )x{uo 1) angle of inclination measured from
t time the horizontal
T temperature ¥ stream function
T perturbation temperature 174 disturbance stream function
T disturbance temperature amplitude v disturbance stream function
i x-direction disturbance velocity amplitude.
amplitude
u, 0, W Darcy’s velocity in x-, y-, z-direction
«,v',w axial, normal, and spanwise Subscripts
components of velocity w condition at the wall
disturbances 00 condition at the free stream.
X, ¥,z axial, normal, and spanwise
coordinates.
Superscripts
Greek symbols * critical condition
o effective thermal diffusivity - amplitude function for disturbance.
2. ANALYSIS (1) The physical properties are considered to be

2.1. The main flow

Consider an inclined impermeable surface (T.,)
embedded in a porous medium (7T’,,) as shown in Fig.
1, where x represents the distance along the plate from
its leading edge, and y represents the distance normal
to the surface. The wall temperature is assumed to be
a power function of x, i.e. T, = T,,+Ax™, where A4 is
a constant. The angle of inclination, ¢, is measured
from the horizontal. The following conventional
assumptions simplify the analysis.

FiG. 1. Coordinate system.

constant, except for the density term that is associated
with the body force.

(2) Flow is sufficiently slow that the convecting fluid
and the porous matrix are in local thermodynamic
equilibrium.

(3) Darcy’s law and the Boussinesq approximation
are employed.

With these assumptions, the governing equations are
given by

du o
wtay 0 )
K/oP .
u= —;(a +pgsm¢) @
K{oP
v= ——|=-+pgcos 3
#<ay pg ¢> 3
or  OT _ 6LT+EZT 4
P M = e @

P =p(1-H(T—Ty)) (5
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where K is the permeability of the saturated porous
medium ; f the coefficient for thermal expansions ; and
o represents the equivalent thermal diffusivity. The
other symbols are defined in the nomenclature.

The pressure terms appearing in equations (2) and
(3) can be eliminated through cross-differentiation.
By applying the boundary layer assumptions
(8/8x « 8/dy,v « u) and introducing the stream func-
tion ¥ which automatically satisfies equation (1),
equations {1)-(5) become

Y pLgBK(OT .
(T )

oy T aoT  &T
G ox axdy T @

The boundary conditions for this problem are

oy

aty=0 5=0; T, =Ty+AX
asy-— 5;—»0; T T, ®
atx =0 a—!l/—=0; T=T,.

dy

The following dimensionless variables are intro-
duced:

E(x) = (Ra,cos¢)>tan ¢
n(x,y) = y(Ra, cos $)"’/x )
fEm) = 2D

(Ra,cos $)
0, m = (T-T ) (Tw—Tx)
where

Ra, = pogKB(Ty, — T, )x/per

is the modified local Rayleigh number. Then, equa-
tions {6) and (7) become

f"+m9+~(1"32) _:(0' ('";r')ae) (10)
(m+1) (m+1) T
TS0l ‘§<far: 966)
an
with boundary conditions
f&0) =0 6¢&0=1 [f(x)=0,
B¢, 0) =0. (12)

In the foregoing equations, the primes denote partial
differentiation with respect to 5. Equations (10)—(12)
are valid for all angles except ¢ = n/2 because £ —» o0
as ¢ — /2. They reduce to those equations for flow
over a horizontal flat plate [1] when £ = 0.

In terms of new variables, it can be shown that the

velocity components and local Nusselt number are
given by

2/3
R [@)?S—@}f @n
o(x,y) = — gc__(ga%z_m‘“

[(m-{-l)f-f—(m —=f'+(m+ )¢ “2] (13)

Nu,(Ra,cos )~ "> = —0(£,0).
2.2. The disturbance flow

The standard method of linear stability theory in
which the instantaneous values of the velocity, pres-
sure and temperature are perturbed by small ampli-
tude disturbances and the mean flow quantities are
subtracted, with terms higher than first order in dis-
turbance quantities being neglected result in the dis-
turbance equations. Then, we get

ou o ow
ax+a—y+“5;=0 (14)
, K|aoP ) ,
W= *;[a—x—i’wgﬁsm¢ T] (15
KjiopP
Vo= - — —pogfcosd T’ 16
ﬂ[ay pugBcosd ] 16)
: K épP
W——;*g; (17)
Aar+_a:r'+ ,§§+_ar'+ ,oT
ar T"ox ¥ ox "ay ”ay

T 9*r 0T
= “(axz o +‘a?) 1%
where the barred and primed quantities signify the
mean flow and disturbance components, and A is the
volumetric heat capacity of the saturated porous
medium to that of the fluid.

Following the method of order-of-magnitude
analysis prescribed in detail by Hsu and Cheng [4],
the terms &u’/0x, 62T’ /0x” in equations (14) and (18)
can be neglected. The omission of du'/0x in equation
(14) implies the existence of a disturbance stream
function ¥’ such that

.

w o= '’ v a2 (19)

Eliminating P’ from equations (15)—(17), and with
the aid of equations (19), leads to

ou' Y pugKBOT

8z Toxdy u 0z sing 20)
Yy oW p.gKBoT
3 T T Pt e @D
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;L?Z_‘_*?Z_}_ aT 'aT’
PRI LA R

o7 O*T
= a( e + "52—2)' 22)
As in Hsu and Cheng [4], we assume that the three-

dimensional disturbances are of the form

W u, T') =[x, p),id(x, ), Tx, )]
xexp (laz+ot+y(x)) (23)

oy oT
0z &y

where ¢ is the spanwise periodic wave number, o is
the temporal growth factor while

Px) = Jaf(X) dx

with o,(x) denoting the spatial growth factor. Sub-
stituting equation (23) into equations (20)-(22) and
setting o = u; = 0 for neutral stability yields

o ip.gKBa .

iaf — oy — p sing* T 24)
N ~

_.).}é_aw: "’miKﬂa osp-T (25

(26)

Equations (24)—(26) are solved based on the local
similarity approximations [4], wherein the dis-
turbances are assumed to have weak dependence in
the streamwise direction (i.e. 8/0x « 3/dy).

We let

~

¥

ia(Ra, cos ¢)'?
O(y) = T/ax”
k = ax/(Ra,cos ¢} /3.

Fip =

@n

One gets the following system of equations for the
local similarity approximations :

. a(Ra.cosdy* fm—2 _ 2m-—1
“= a 3x? e 3x? F

+ /””_Kg:MAxm@ (28)

F'—k*F = —k(Ra,cos¢)'*® 2%

v g2 m+1 . m+1 0f\
0"'—k’@ = (mnf)O— ( 3 S+ — 3 665 0
m+1._ 00 m-2 X N
+ (m6+ 3 gé_f t3 "0 )t;c(RaI cosg) "

+{k(Ra,cos ¢)2OVF. (30)

Then, the substitution of & and © from equations (28)
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and (29) into equation (30) yields

(D —k?)*F— (mf+ 0+ " e aif
g8
+——m§9)(nz kﬁm(’ﬁi1 I+ ’";1 ZJ;)D

« (D* —k?)F4 (m0+ mtl,00 m- 2n0>

3 a3
m=2 _ 2m—1_,
X ( 3 nkF +_3*F)
+k*(Ra,cos 9)’0F =0 31
with the boundary conditions
F{O) = D’F(0) = Flo) = D*F(} =0 (32)

where D" stands for dn/dn. Equation (31) along with
its boundary condition, equation (32), constitutes a
fourth-order system of linear ordinary differential
equations for the disturbance amplitude distributions
F(n). For fixed m and ¢, the solution F is an eigen-
function for the eigenvalues Ra, and k.

3. NUMERICAL METHOD OF SOLUTION

Equations (10)—(12) for the base flow were solved
by an implicit finite difference scheme similar to, but
modified from that described in ref. [5]. Its details are
omitted here. In the stability calculations, the dis-
turbance equations are solved by separately inte-
grating two linearly independent integrals, The full
equations may be written as the sum of two linearly
independent solutions F(n) = F,+ BF,. The two inde-
pendent integrals F, and F, may be chosen so that
their asymptotic solutions are

Fl=e™, Fl=e 33

where

e ]
[( pr L 0 2 9)5]+k2}”2.

3 c98T 3

Equation (31) with boundary conditions, equation
(32), are then solved as follows. For specified m, ¢
and Ra,, k is guessed. Using equations (33) as starting
values, the two integrals are integrated separately
from the outer edge of the boundary layer to the
wall using a sixth-order Runge—Kutta variable size
integrating routine incorporated with the Kaplan fil-
tering technique [6] to maintain the linear inde-
pendence of the eigenfunctions. The required input of
the base flow to the disturbance equations is calcu-
lated, as necessary, by linear interpolation of the
stored base flow. From the values of the integrals at
the wall, B is determined using the boundary con-
ditions F(0) = 0. The second boundary condition
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D?F(0) = 0 is satisfied only for the appropriate value
of the eigenvalue k. A Taylor series expansion of the
initial guess of k provides a correction scheme for the
initial guess of k. Iterations continue until the second
boundary condition is sufficiently close to zero
(<1075, typically).

4. RESULTS AND DISCUSSIONS

Figure 2 shows the effects of the inclination par-
ameter ¢ = (Ra,cos¢)'*tan ¢ on the dimensionless
tangential velocity profile /* across the boundary layer
for m = 0. It is seen that, as would be expected, the
dimensionless tangential velocity increases with
increasing value of ¢; that is, the tangential velocity
increases with increasing value of Ra, for a given angle
¢ or increases with increasing inclination angle ¢ for
a given Rayleigh number Ra,. The dashed lines rep-
resent the similarity solutions for an equivalent ver-
tical plate [4], where the normal component of the
buoyancy force is neglected in the main flow. It is
noted that the equivalent vertical plate solutions have
been transformed to present (&,n) coordinates for
easy comparison with our non-similar solutions. Note
that large calculated differences from the equivalent
vertical plate results are apparent for ¢ < 3. That is,
the discrepancy is getting larger for small angles of
inclination.

Figure 3 shows the effects of the inclination par-

12.0

763

ameter ¢ on the dimensionless temperature profiles
across the boundary layer for m = 0. As can be seen
from this figure, as ¢ increases, the temperature
boundary layer thickness decreases. Numerical solu-
tions of the local Nusselt number for selected values of
m are shown in Fig. 4 for various values of inclination
parameter £. As expected, the local Nusselt number
increases as £ increases. It is also revealed that the
equivalent vertical results underestimate the heat
transfer rate.

From Figs. 2-4, the equivalent vertical solutions
show considerably good agreement with our present
results for £ = 7; however as ¢ decreases to zero, the
equivalent vertical solutions are seen to deviate further
from the present results. This is because as & decreases,
the normal component of gravity is more pronounced.
Thus the equivalent vertical plate results for small
values of ¢ are not accurate. The solutions of Cheng
and Chang [1] for a horizontal plate (i.e. £ = ¢ = 0)
are also included in Figs. 2-4. 1t is shown that our
present results are in excellent agreement with ref. [1].

Figure 5 shows the neutral stability curves for selec-
ted values of ¢ (0, 5, 20, 30, 50 and 70°) at m = 0. It
is seen that as the inclination angle ¢ increases, the
neutral stability curves shift to higher Rayleigh num-
ber and higher wave number, indicating a stabilization
of the flow to the vortex instability. The dashed lines
denote the stability analysis from Hsu and Cheng [4],
where the normal component of the buoyancy force

10.0

\ o

Present results

----— Eguivalent vertical
plate results

Cheng and Chang

(4]
f1]

FIG. 2. The variations of the tangential velocity component across the boundary layer for various . Dashed
curves represent the equivalent vertical plate results [4].
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FiG. 3. The temperature profiles across the boundary layer for various ¢. Dashed curves represent the
equivalent vertical plate results [4].

fo) Cheng and Chang [1]

Present results m=1.5

Equivalent vertical
plate results [4]

0 2 4 6 8 10

F1G. 4. The local Nusselt number vs £ for selected values of m. Dashed curves represent the equivalent
vertical plate results [4].
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> o Hsu et al. [2]
10 L | | 1 L
0 1 2 3

- 1/3
kl—ax/(Rax)

F1G. 5. Neutral stability curves for selected values of inclination angles ¢.
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Fi1G. 6. Critical Rayleigh number vs ¢ for selected values of m.
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Present results

plate results

_ 1/3
—ax/RaX

ky

--- - Equivalent vertical
(4]

T T f

40 60 70

®

FiG. 7. Dimensionless critical wave number vs ¢ for selected values of m.

was not included in the main flow. It is shown that as
¢ decreases the two sets of results deviate more. On
the other hand, as ¢ > 30°, these two sets of solutions
differ very little whether the normal component of the
buoyancy force is included in the main flow or not.
This is due to the fact that for large ¢ the normal
component of the buoyancy force is small, so it can
be neglected. For ¢ = 0 (£ = 0), our present results
are in good agreement with those of Hsu et al. [2].
The critical Rayleigh number and wave number,
which marks the onset of longitudinal vortices, are
plotted as a function of inclination angle ¢ in Figs. 6
and 7, respectively, for m = 0, 0.5, 1 and 1.5. It is seen
that the critical Rayleigh number is a rather strong
function of m. The larger the value of m is, the flow
is more stable for the vortex mode of instability. This
is because as m increases, the streamwise driving force
(i.e. the terms #(07/0x) and #(0T/6x) in equation
(26)) increases. Consequently, the flow is more stable.
Itis apparent from Fig. 7 that the critical wave number
increases as ¢ increases. Also appearing in these two
figures are dashed lines representing the stability
results obtained by Hsu and Cheng [4], where the
normal component of the buoyancy force is neglected.
It is seen that the equivalent vertical plate assumption
leads to significant errors in the stability results as ¢
decreases from 30° down to the horizontal orien-

tation. It is also shown that as m increases, the devi-
ation in the two sets of results is seen to become larger.

5. CONCLUSIONS

A linear stability analysis is made to re-examine the
buoyancy-induced flow in a porous medium adjacent
to an inclined heated surface. The results show that
both the critical Rayleigh number and wave number
are increased as the plate inclination is increased from
the horizontal. The stability analysis based on the
equivalent vertical plate assumptions in the main flow
is found to be inadequate as the angle of inclination
from the horizontal is less than 30°. It is also found
that as the index of power law m increases, the flow
becomes less susceptible to the vortex instability, and
the discrepancy of the heat transfer rate, critical Ray-
leigh and wave numbers between our present results
and the equivalent vertical plate results become larger.
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INSTABILITE TOURBILLONNAIRE D'UN ECOULEMENT INCLINE DE COUCHE
LIMITE INDUIT PAR PESANTEUR DANS UN MILIEU POREUX SATURE

Résumé—Une théorie linéaire de stabilite est utilisée pour analyser linstabilité tourbillonnaire de
I'écoulement de couche limite induit par pesanteur dans un milieu poreux saturé adjacent d une surface
chaude inclinée, ou la température pariétale est une fonction puissance de la distance a P'origine. Dans
Panalyse de I’écoulement principal, on retient dans les équations de quantité de mouvement les composantes
normale et longitudinale de la force de pesanteur. Les résultats numériques pour le transfert thermique
a la surface, la courbe de stabilité neutre, les nombres de Rayleigh critiques et les nombres d’ondes, sont
présentés pour un domaine d’angle d’inclinaison ¢ a partir de I’horizontale compris entre 0 et 70°. On
trouve que lorsque P'angle d’inclinaison augmente, le flux thermique croit tandis que la susceptibilité de
I’écoulement au mode tourbillonnaire d’instabilité diminue. La présente étude fournit des résultats nou-
veaux pour les petits angles (¢ < 30°) et des résultats pour des grands angles (¢ > 30°) plus précis que
dans ’étude de Hsu et Cheng (ASME J. Heat Transfer 101, 660665 (1979)) qui néglige la composante
normale de la force de pesanteur dans I’écoulement principal.

WIRBELINSTABILITAT IN EINER AUFTRIEBSINDUZIERTEN GENEIGTEN
GRENZSCHICHTSTROMUNG IN EINEM GESATTIGTEN POROSEN MEDIUM

Zusammenfassung—Es wird eine lineare Stabilitdtstheorie verwendet, um die Wirbelinstabilitit in einer
auftriebsinduzierten Grenzschichtstromung an einer geneigten, beheizten Oberflidche in einem gesittigten
pordsen Medium zu bestimmen. Die Wandtemperatur ist eine Potenzfunktion der Entfernung vom Zu-
strompunkt. Zur Bestimmung der Hauptstrémung sind die Komponenten der Auftriebskraft in Stro-
mungsrichtung und senkrecht dazu in der Impulsgleichung enthalten. Die numerischen Berechnungen
des Wirmeiibergangskoeffizienten, der neutralen Stabilitdtskurve und der kritischen Rayleigh- und der
Wellenzahl sind in Abhéngigkeit vom Neigungswinkel ¢ zur Horizontalen im Bereich von 0° bis 70°
dargestellt. Es zeigte sich, daB fiir steigende Neigungswinkel der Wérmeiibergang zunimmt, wohingegen
die Anfilligkeit der Stromung gegen Wirbelinstabilitdt sinkt. Die Untersuchung liefert fiir kleine Nei-
gungswinkel (¢ < 30°) neue Ergebnisse fiir die Wirbelinstabilitdt. Fiir groBe Neigungswinkel (¢ > 30°)
werden genauere Ergebnisse erreicht als bei Hsu und Cheng (ASME J. Heat Transfer 101, 660665 (1979)),
die den EinfluBl der Normalenkomponente der Auftriebskraft auf die Hauptstrémung vernachldssigt haben.

BHUXPEBASI HEYCTOMYHUBOCTH BBI3BIBAEMOI'O IMMOABEMHON CHJION
HAKJIOHHOI'O TEMEHHUSI B MOTPAHUYHOM CJIOE B HACHIIEHHOM XUAKOCTHIO
TTOPUCTOM CPEJIE

Ammoramms—Ha oCHOBe JIHHEHOH TEOPHH YCTONYHBOCTH aHAJIM3HPYETCS BHXPEBAaA HEYCTOHYMBOCTHL
BBI3BIBAEMOI0 MOTBEMHOM CHIIOH TeYeHHS B MOrPAHHYHOM CJIOE€ B HACHIIICHHON XHIKOCTBIO MOPHCTOHR
cpene, npuierapolleif Xk HaKJIOHHOH# HarpeBaeMoif NIOBEPXHOCTH, Ile TEMIIEPATYpa CTEHKH ABJIAETCH CTe-
neHHO# (yHKuUHMel pacCcTOSHMS OT HavaIbHOM TOYKH. [l aHaNM3a TedeHHs BHE MOTrPaHHUYHOrOC CNOA B
YpaBHCHHH KOJIHYCCTBA ABHXKCHAA YITCHA KAK KOMIIOHECHTA MOABEMHOMR CHJIbL, ACHCTBYIOUIEH B HANpaB-
JICHAM NOTOKA, TAK H KOMIOHEHTa, HaNpaBleHHAA MO HOPMAaJ M K MOTOKY. IIpHBEeNEHBI 4YHMCIICHHBIC
pe3yJbTaTH NO TEILTOOOGMEHY MOBEPXHOCTH, KpHBasA HEHTPaIbHONH YCTOHYHBOCTH, KDHTHYECKOE YHCIIO
Pajies ¥ BOJIHOBOE YHCJIO OIS YTJIOB HAaKJIOHA MOBEPXHOCTH ¢ K ropm3oHTaym ot O no 70°. IToka3ano,
4TO 110 Mepe YBEJIHYEHHMs YIJIA HAKJIOHA MHTEHCHBHOCTH TemIooOMeHa BO3DACTacT, B TO BPEMA Kak
BIHAHHE PeXHMA BAXPEBOH HEyCTONYHBOCTH Ha TeYeHHe yMeHbInaetTcs. [lonyveHsl HOBBIE JaBHLIC MO
BHXpEBOM HeyCTOWYHBOCTH IpH HeGONMBIIAX yriax HakIoHA (¢ < 30°) B yITEHB! pe3yJbTATH, MOJYYeH-
Hbie panee Xcy # UeHroM npw yriax Hakiona ¢ > 30° (Tenaonepedauwa Tom 101, cTp. 660-665 (1979)) B
npeHeOpexeHNn HOPMaIbHO# KOMITOHEHTOH IIOXBEMHOMN CHJIBI OCHOBHOTO NOTOKA.



